
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #14

Scripting

• Scripting is used to have code not hard-coded,
modifiable in live without recompile
– useful to model flexible AI

• character personalities, behaviors

– and adjusting gameplay (game logic content)
• mission creation, dialogs, level design

• Scripts are satellites to the core engine
– can be written in a different language (more accessible

to non programmers)

– run in safe environment (faults are not backfiring to the
main application)

– can be coded by different people (AI designers, content
production people ...)

Good for team management and program security

3

Introduction

• Calling, interpreting and returning from script

incurs a significant performance hit

• But the point is to add extensibility and

flexibility to the engine, not speed

• Recent scripting languages have good

performance and small memory footprint

– Lua and Python

4

Introduction

• C++ code belongs to the core engine of the

game

– Everything that is CPU intensive should be

implemented in the core engine

• Scripting code is best suited for gameplay

– High-level logic and program flow mechanisms

should be implemented in scripts

5

Introduction

• Three approaches

– Creating your own scripting language in your

game engine from scratch

– Using embedded scripting language

– Using socket interface scripting

6

Introduction

• Three steps

– Definition of the language syntax

• what syntax for what features

– Creation of the program loader

• load the code into memory for execution

– Execution of the program

• can range from executing binary module to

interpreting high-level language

7

Building a scripting language

• Parsing a simple language: a rule system

example

– composed of a list of rules

– each rule consists of conditions and actions

(similar to if ... then ...)

– the run-time engine selects the first true rule

and executes the associated action(s)

8

Building a scripting language

• 1st step is to define the syntax

– tokens and expressions

– example for a rule

– each rule can have multiple conditions (ANDed)

and multiple actions (sequenced)

9

Building a scripting language

defrule

 condition1

 condition2

 ...

=>

 action1

 action2

 ...

• Expressions are parsed by a grammar

– For condition

– we can query Euclidean distances, angular

distances to an enemy and life level

– we can test if the enemy is on our left or right

10

Building a scripting language

condition -> float_function operator float | boolean_function

float_function -> DISTANCE | ANGLE | LIFE

operator -> GREATER | SMALLER | EQUAL

boolean_function -> LEFT | RIGHT

• Expressions are parsed by a grammar

– For action

– we can rotate and move

– we can shoot at an enemy (e.g. the player)

11

Building a scripting language

action -> float_action float | unary_action

float_action -> ROTATE | MOVE

unary_action -> SHOOT

• A rule system can now describe behaviors

– Rule 1: avoid collision when too close

12

Building a scripting language

defrule

 DISTANCE SMALLER 5

 LEFT

=>

 ROTATE 0.01

 MOVE 0.1

defrule

 DISTANCE SMALLER 5

 RIGHT

=>

 ROTATE -0.01

 MOVE 0.1

• A rule system can now describe behaviors

– Rule 2: shoot at the enemy

13

Building a scripting language

defrule

 ANGLE SMALLER 0.25

=>

 SHOOT

• A rule system can now describe behaviors

– Rule 3: chase the enemy

14

Building a scripting language

defrule

 LEFT

=>

 ROTATE -0.01

 MOVE 0.1

defrule

 RIGHT

=>

 ROTATE 0.01

 MOVE 0.1

• The three rule systems are evaluated it that

order

• When a rule is true, the corresponding

actions are executed

• Enacts the entity to chase and shoot at

player while avoiding collisions

15

Building a scripting language

• 2nd step is to create the program loader

– Definition of a data structure to hold the rules

(possible as syntax is simple and very regular)

16

Building a scripting language

typedef struct {

 int opcode; // ANGLE, MOVE, etc.

 int operation; // SMALLER, etc.

 float param;

} fact;

typedef struct {

 std::list<fact> condition;

 std::list<fact> action;

} rule;

• The core program loads the script and sets

up the list of rules

• Called a virtual machine

17

Building a scripting language

class vMachine {

 std::vector<rule> rules; // vector of rules

 public:

 void load(char * scriptFileName);

};

18

Building a scripting language

void vMachine::load(char *filename) {

 // assume the computation of number of rules in the file in numrules, and

// the initialization of the vector of rules

 for (int i = 0; i < numrules; i++) {

 while (convert_to_opcode(readtoken(file)) != THEN) { // in defrule

 fact f;

 // read a condition

 char * stropcode = readtoken(file);

 f.opcode = convert_to_opcode(stropcode);

 switch (f.opcode) {

 case ANGLE:

 char * operation = readtoken(file);

 f.operation = convert_to_opcode(operation);

 // GREATER, etc.

 f.param = atoi(readtoken(file));

 rules[i].condition.push_back(f);

 break;

 // other cases (DISTANCE, LIFE, LEFT, RIGHT) ...

 }

 }

 // ...

19

Building a scripting language

 // ...

 // rule conditions ok, move on to actions

 while (!file.eof() && (convert_to_opcode(readtoken(file)) != DEFRULE))

 {

 fact f;

 // read an action

 char * stropcode = readtoken(file);

 f.opcode = convert_to_opcode(stropcode);

 switch (f.opcode) {

 case ROTATE:

 f.param = atoi(readtoken(file));

 rules[i].action.push_back(f);

 break;

 // other cases (MOVE, SHOOT) ...

 }

 }

}

• We need to provide a routine to read token

– strings or values separated by spaces and new

lines, we can use operator >>

• opcode are defined as integer values (in an

enum type for example)

• convert_to_opcode

20

Building a scripting language

int convert_to_opcode (char * opcode) {

 if (strcmp(opcode,"LEFT") == 0) return LEFT;

 // other cases ...

 if (strcmp(opcode,"=>") == 0) return THEN;

 return WRONG_OPCODE;

}

• 3rd step is to execute the script

• The virtual machine provides an execution

function: run

21

Building a scripting language

class vMachine {

 std::vector<rule> rules; // vector of rules

 public:

 void load(char * scriptFileName);

 void run();

};

• Executing the program is just scanning the

list of rules and applying the appropriate

actions if conditions are fulfilled

22

Building a scripting language

void vMachine::run() {

 for (unsigned int r = 0; r < rules.size(); r++) {

 if (valid(rules[r])) { // evaluate conditions

 run_actions(rules[r]); // execute actions

 // break; to stop evaluating if rule found (optional)

 }

 }

}

• Two additional functions in the virtual

machine

– Evaluation of the conditions

– Execution of the actions

23

Building a scripting language

class vMachine {

 std::vector<rule> rules; // vector of rules

 public:

 void load(char * scriptFileName);

 void run();

 bool valid (rule r);

 void run_actions (rule r);

};

• Evaluation of the conditions

24

Building a scripting language

bool vMachine::valid (rule r) {

 std::list<fact>::iterator pos = r.condition.begin();

 while (pos != r.condition.end()) { // for each condition

 switch (pos->opcode) { // what kind of condition

 case ANGLE:

 // compute angle (internal game code)

 if ((pos->operation == GREATER) && (angle <= pos->param))

 return false; // only return false as condition are ANDed

 if ((pos->operation == SMALLER) && (angle >= pos->param))

 return false;

 if ((pos->operation == EQUAL) && (angle != pos->param))

 return false;

 break;

 // other cases (DISTANCE, LIFE, LEFT, RIGHT) ...

 }

 pos.next();

 }

 return true;

}

• Execution of the actions

25

Building a scripting language

void vMachine::run_actions (rule r) {

 std::list<fact>::iterator pos = r.action.begin();

 while (pos != r.action.end()) {

 switch (pos->opcode) {

 case ROTATE:

 yaw += pos->param;

 break;

 case MOVE:

 position.x += pos->param * cos(yaw);

 position.y += pos->param * sin(yaw);

 break;

 // other cases (SHOOT) ...

 }

 }

}

• From here, we can add many rules to improve
the AI behavior

• Game logic can be coded that way by defining
over 100 facts

– example: Age of Empire

• The rule execution is still binary compiled code,
so quite fast
– Overhead from the loop (run) and switches (valid

and run_actions)

– The more time consuming the actions, the more
negligible the overhead

26

Building a scripting language

typedef struct { int opcode; int operation; float param;} fact;

• Parsing structured languages

– Possible to parse code for more complex

languages, but has its limits

• difficult to handle hundreds of structures, function

calls and symbols

– Lexical scanners are then used to detect

whether a token is valid or not

• such as the Lex analyzer

27

Building a scripting language

• Context-free grammars allow to declare

languages by using substitution rules

– if statement in C

– and numeric expression

28

Building a scripting language

if_statement :

 IF '(' expression ')' statement

 | IF '(' expression ')' statement ELSE statement

;

expression :

 NUMBER

 | expression opcode expression

| '(' expression ')'

 ;

opcode :

 '+' | '-' | '*' | '/' ;

• When the grammar is defined, the input
script is

– parsed, converted to tokens and checked for
syntactic correctness

– Yet Another Compiler Compiler (Yacc)
• generates the code to parse a grammar

• We finally decide what to do during parsing
the script

– interpret the script

– generate binary code

– convert to different format, ...

29

Building a scripting language

• If you do not need specific functionalities,

regular C-like scripting languages are

available, called embedded languages

– called from the host application (C++ game)

– provide internal programming and API for host

• Two approaches

– Designed to be embedded (Python, Lua)

– Regular languages embedded using special

tools (Java Native Interface JNI to execute Java

from C/C++ applications)

30

Embedded languages

• Dynamic programming language

• High-level OO interpreted language

• Used in games for game logic and server

control

– Battle Field 2, Civilization IV, Freedom Force,

Disney’s Toontown, Frets On Fire, ...

31

Python

• Control flow (if, for, break, continue ...)

• Data structures (list, sequence, ...)

• Function

• I/O

• Error and exception

• Class

• Template

• Multi-threading

• Module organization

• and more

32

Python

• Download and install Python

– http://www.python.org/

• In the VS project properties

– include path: PYTHON_HOME/include

– library path: PYTHON_HOME/libs

• Header file to include

33

Embedding Python

#include “Python.h”

http://www.python.org/

• Initialize the Python interpreter

• Run the script

• Finalize the Python interpreter

34

Embedding Python

Py_Initialize();

// Giving directly the sequence of commands in parameter

PyRun_SimpleString(“/*script commands/*”);

// Referencing a script file

FILE * file = fopen(script_name,“r”);

PyRun_SimpleFile(file,script_name);

Py_Finalize();

• Example

35

Embedding Python

#include “Python.h”

int main () {

 Py_Initialize();

 PyRun_SimpleString(“from time import time,ctime\n

 print(‘Today is ’,ctime(time()))\n”);

 FILE * file = fopen(“script.py”,“r”);

 PyRun_SimpleFile(file,“script.py”);

 Py_Finalize();

 return 0;

}

from time import time,ctime script.py

print(‘Today is ’,ctime(time()))

• Exchanging data requires more code

– Convert data values from C++ to Python

– Perform a function call to a Python interface

routine using the converted values

– Convert the return data from Python to C++

36

Embedding Python

• Importing script (python module)

• Defining the function to call

• Defining the function parameters

• Running the function

37

Embedding Python

PyObject * imported = PyImport_Import(scriptModuleName);

PyObject * function = PyObject_GetAttrString(imported,functionName);

PyObject * parameters = PyTuple_New(nbParameters); // here 2

PyObject * p1 = PyLong_FromLong(value1);

PyObject * p2 = PyFloat_FromString(“10.9”);

PyTuple_SetItem(parameters, 0, p1);

PyTuple_SetItem(parameters, 1, p2);

PyObject * result = PyObject_CallObject(function,parameters);

• Error checking after each call

– as you cannot assume anything from an

external user (script programmer)

– you can at anytime print the last entry from the

Python error log

38

Embedding Python

if (imported != NULL) ... // to check the file loading

if (function != NULL && // to check if function exists

 PyCallable_Check(function)) // to check if function callable

if (p1 != NULL && p2 != NULL) ... // to check if type conversion ok

if (result != NULL) ... // to check if call succeed

PyErr_Print(); // or access it by: PyObject* PyErr_Occured()

• Reference counts

– In C++, allocation/de-allocation are managed by

new/delete operators

– Python uses reference counting to avoid

memory leaks

• each object contains a counter which is incremented

when a new reference to the object is created and is

decremented when a reference to it is deleted

• when counter reaches zero the object is de-allocated

39

Embedding Python

Py_INCREF(x); // to increase counter of x

Py_DECREF(x); // to decrease counter of x

• Example (without error checking)

– calling a max scripted function

40

Embedding Python

def scriptMax(a,b) myMax.py

 c = 0

 if a > b : c = a

 else : c = b

 print(“Max value between ”,a,“ and ”,b,“ is ”,c)

 return c

• Example (without error checking)

41

Embedding Python

long int value1 = 2;

long int value2 = 10;

Py_Initialize();

PyObject * imported = PyImport_Import(“myMax”);

PyObject * function = PyObject_GetAttrString(imported,“scriptMax”);

PyObject * parameters = PyTuple_New(2);

PyObject * p1 = PyLong_FromLong(value1);

PyObject * p2 = PyLong_FromLong(value2);

PyTuple_SetItem(parameters, 0, p1);

PyTuple_SetItem(parameters, 1, p2);

// ...

• Example (without error checking)

42

Embedding Python

// ...

PyObject * callResult = PyObject_CallObject(function,parameters);

Py_DECREF(p1);

Py_DECREF(p2);

Py_DECREF(parameters);

long int maxValue = PyLong_AsLong(callResult);

Py_DECREF(callResult);

Py_DECREF(function);

Py_DECREF(imported);

Py_Finalize();

• As long as the function signature does not

change (module and function names, type

and number of parameters and return value)

– you can change the code of scriptMax

– without compiling again

– useful when someone else is coding external

functionalities (game logic, AI ...)

– only the interface with the C++ application is

needed

43

Embedding Python

• Extending embedded Python

– The Python interpreter might need access to

functions in the main C++ program

– The main program can provide an API for the

Python interpreter

– By creation of modules in main program

44

Embedding Python

PyObject* PyModule_Create(PyModuleDef * module)

• Example

– we want to call the C++ function getNumPlayers

from the script

– we need to import the module before the

Py_Initialize()

45

Embedding Python

import GameEngine script.py

print(“Number of players: ”, GameEngine.getNumPlayers())

// ... main.cpp

PyImport_AppendInittab(“GameEngine”, &PyInit_GameEngine);

Py_Initialize();

// call to script.py

• Example

46

Embedding Python

static PyObject * getNumPlayers (PyObject * self, PyObject * args) {

 if (!PyArg_ParseTuple(args, ":getNumPlayer")) return NULL;

 return PyLong_FromLong(GameEngine::getInstance()->getNumPlayers());

}

static PyMethodDef GameEngineMethods [] = {

 {"getNumPlayers", getNumPlayers, METH_VARARGS, "print #player"},

 {NULL, NULL, 0, NULL}

};

static PyModuleDef GameEngineModule = {

 PyModuleDef_HEAD_INIT, "GameEngine", NULL, -1, GameEngineMethods,

 NULL, NULL, NULL, NULL

};

static PyObject * PyInit_GameEngine (void) {

 return PyModule_Create(&GameEngineModule);

}

• Extending embedded Python

– When user types need to be exposed from the

main program, use the boost-Python library

47

Embedding Python

#include “className.h”

#include “boost/python.hpp”

#include “boost/ref.hpp”

#include “boost/utility.hpp”

BOOST_PYTHON_MODULE (moduleName) {

 class_<className, bases<baseClassName>, std::auto_ptr<className>>(“className”)

 .def(“memberFunction1”, &className::memberFunction1)

 .def(“memberFunction2”, &className::memberFunction2)

 ;

 implicitly_convertible<std::auto_ptr<className>,

 std::auto_ptr<baseClassName>>();

}

• The complete reverse approach is often
possible

– main application is the script interpreter and not
the C++ program

– add the game engine functionalities to the script
language

– script interpreter provides a wrapper of another
language / library

– Example: Python-Ogre www.pythonogre.com
• to run Ogre applications from Python interpreter

• Ogre application (game components) can be
compiled as Python dynamic library

48

Embedded C++ in script

http://www.pythonogre.com/

• To use java functionalities with libraries and

built-in routines as embedded language

• The choice between embedded oriented

(Python, Lua) and language oriented (Java)

scripting comes down to user preferences

• We need an additional tool to connect a java

module to an application: the Java Native

Interface (JNI)

49

Java scripting

• Specific set of calls within the Java

programming language

• Bidirectional mechanism

– A Java program can call C/C++ routines

– A C/C++ program can access methods written in

Java using the Invocation API

50

Java Native Interface

• Example

– Calling a simple “Game Over!” Java program

– assuming we have the JavaScript.class file by

calling javac JavaScript.java

51

Java Native Interface

public class JavaScript { JavaScript.java

 public static void main(String[] args) {

 System.out.println(“Game Over!”);

 }

}

52

Java Native Interface

#include <jni.h> // JNI calls

#define USER_CLASSPATH "." // where JavaScript.class is

int main() {

 JNIEnv * env; // JNI environment

 JavaVM * jvm; // Java virtual machine

 JDK1_1InitArgs vm_args;

 char classpath[1024];

 vm_args.version = 0x00010001;

 JNI_GetDefaultJavaVMInitArgs(&vm_args);

 // append where our .class files are to the classpath

 sprintf(classpath, "%s;%s", vm_args.classpath, USER_CLASSPATH);

 vm_args.classpath = classpath; // update the classpath

 // ...

• Example

• Example

53

Java Native Interface

 // ...

 // create the java VM

 jint res = JNI_CreateJavaVM(&jvm, &env, &vm_args);

 if (res < 0) { exit(1); } // can't create the VM

 jclass cls = env->FindClass(“JavaScript”);

 if (cls == 0) { exit(1); } // can't find the class we are calling

 jmethodID mid = env->GetStaticMethodID(cls,"main","([Ljava/lang/String;)V");

 if (mid == 0) { exit(1); } // can't find JavaScript.main

 jvalue * args; // function parameters

 env->CallStaticVoidMethod(cls, mid, args);

 jvm->DestroyJavaVM();

 return 0;

}

• jni.h is in the JDK include folder

• Function parameters can be specified

• Call function name has to be adapted to called

function specification

• Values can be returned from Java code

54

Java Native Interface

jstring jstr = env->NewStringUTF(“parameter”);

jvalue * args = env->NewObjectArray(1,env->FindClass("java/lang/String"),jstr);

env->CallStaticVoidMethod(cls, mid, args);

jfloat jf = env->CallFloatMethod(cls, mid, args);

CallCharMethod(...);

CallNonVirtualBooleanMethod(...);

CallStaticFloatMethod(...);

// ...

• Main program is server while script is client

• Calling functionalities from sockets

– separate running environment (safer)

– platform independent architecture

– but not suited for time-critical tasks (socket
access quite slow)

• Script module can be compiled

– faster but lost of flexibility (same language)

• Script and application do not need to be
physically on the same machine

55

Socket-based scripting

• Coding principle of the script module

56

Socket-based scripting

// open socket to main game program

while (!end) {

 // read opcode from socket

 switch (opcode) {

 case QUIT:

 end = true;

 break;

 case MOVEPLAYER:

 // read optional parameters of opcode

 // ... move the player ...

 // take actions and send back data to main program

 break;

 // other opcode specific operations

 }

}

// close socket

• Socket-based scripting is better designed to

receive parameters, to perform local

calculations, and to return a result

• Accessing and returning objects, structures

and algorithms is again difficult

– One solution consists in making them visible

and callable from the script

57

Socket-based scripting

End of lecture #14

Next lecture

Game engine standards

